Leetcode记录:贪心算法
贪心算法
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。贪心算法并没有固定的套路。所以唯一的难点就是如何通过局部最优,推出整体最优。如何验证可不可以用贪心算法呢? 最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。
摆动序列,跳跃游戏,k次取反,分发糖果,根据身高重建队列,单调递增的数字,监控二叉树的思路,都需要重点看看。
引爆气球,无重叠区间,划分字母区间,合并区间都是一类的区间问题。
分发饼干
Leetcode 455. 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
贪心思路: 大饼干给大孩子吃,小饼干给小孩子吃,因此将两个数组排序一下,用双指针倒序即可。
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = s.size() - 1; // 饼干数组的下标
int result = 0;
for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
result++;
index--;
}
}
return result;
}
摆动序列
Leetcode 376. 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
贪心思路:取数组中的局部峰值即可,即计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。 但是要考虑数组首尾以及平坡的情况:数组首尾的话可以默认右侧是峰值,即res初始化为1。
对于平坡情况,记录峰值的条件应该是(preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)
。
另外,preDiff只有在坡度摆动发生变化的时候才进行改变,这样是为了避免单调坡上出现平坡的情况。
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
}
}
return result;
}
也可以考虑dp思路:
- 设 dp 状态dp[i][0],表示考虑前 i 个数,第 i 个数作为山峰的摆动子序列的最长长度
- 设 dp 状态dp[i][1],表示考虑前 i 个数,第 i 个数作为山谷的摆动子序列的最长长度
则转移方程为:
- dp[i][0] = max(dp[i][0], dp[j][1] + 1),其中0 < j < i且nums[j] < nums[i],表示将 nums[i]接到前面某个山谷后面,作为山峰。
- dp[i][1] = max(dp[i][1], dp[j][0] + 1),其中0 < j < i且nums[j] > nums[i],表示将 nums[i]接到前面某个山峰后面,作为山谷。
最大子序和
Leetcode 53. 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
贪心思路:遍历数组,遇到负数就将sum重置即可:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count;
}
if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return result;
}
dp思路:dp[i]表示包括i之前的最大连续子序列和, dp[i] = max(dp[i - 1] + nums[i], nums[i]),实时更新result即可。
买卖股票最佳时机II
Leetcode 122. 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。
贪心思路: 第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!
所以把每天的正利润都拿到就可以:
int maxProfit(vector<int>& prices) {
int result = 0;
for (int i = 1; i < prices.size(); i++) {
result += max(prices[i] - prices[i - 1], 0);
}
return result;
}
dp思路:dp[i][1]第i天持有的最多现金,dp[i][0]第i天持有股票后的最多现金,第i天持股票所剩最多现金 = max(第i-1天持股票所剩现金, 第i-1天持现金-买第i天的股票),第i天持有最多现金 = max(第i-1天持有的最多现金,第i-1天持有股票的最多现金+第i天卖出股票)。 dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
跳跃游戏I
Leetcode 55. 给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。
实时记录能跳的最远距离即可:
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
跳跃游戏II
给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。你的目标是使用最少的跳跃次数到达数组的最后一个位置。
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。 注意每次都要先更新nextDistance。
int jump(vector<int>& nums) {
if (nums.size() == 1) return 0;
int curDistance = 0; // 当前覆盖最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖最远距离下标
for (int i = 0; i < nums.size(); i++) {
nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖最远距离下标
if (i == curDistance) { // 遇到当前覆盖最远距离下标
ans++; // 需要走下一步
curDistance = nextDistance; // 更新当前覆盖最远距离下标(相当于加油了)
if (nextDistance >= nums.size() - 1) break; // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
}
}
return ans;
}
K次取反后最大化的数组和
Leetcode 1005. 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)以这种方式修改数组后,返回数组可能的最大和。
如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让数组和达到最大。那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大。
本题的解题步骤为:
第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小 第二步:从前向后遍历,遇到负数将其变为正数,同时K– 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完 第四步:求和
static bool cmp(int a, int b) {
return abs(a) > abs(b);
}
int largestSumAfterKNegations(vector<int>& A, int K) {
sort(A.begin(), A.end(), cmp); // 第一步
for (int i = 0; i < A.size(); i++) { // 第二步
if (A[i] < 0 && K > 0) {
A[i] *= -1;
K--;
}
}
if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
int result = 0;
for (int a : A) result += a; // 第四步
return result;
}
加油站
Leetcode 134. 在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。 i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int totalSum = 0;
int start = 0;
for (int i = 0; i < gas.size(); i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
start = i + 1; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return start;
}
分发糖果
Leetcode 135. 老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。你需要按照以下要求,帮助老师给这些孩子分发糖果:
- 每个孩子至少分配到 1 个糖果。
- 相邻的孩子中,评分高的孩子必须获得更多的糖果。 那么这样下来,老师至少需要准备多少颗糖果呢?
如果两边一起考虑一定会顾此失彼。先确定右边评分大于左边的情况(也就是从前向后遍历),只要右边评分比左边大,右边的孩子就多一个糖果。再确定左孩子大于右孩子的情况(从后向前遍历),因为rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以要从后向前遍历。
如果ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。此时就要取最大值才能都满足。
int candy(vector<int>& ratings) {
vector<int> candyVec(ratings.size(), 1);
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}
// 统计结果
int result = 0;
for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
return result;
}
柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。 注意,一开始你手头没有任何零钱。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
分类讨论,20元的优先给10元再给5元即可:
bool lemonadeChange(vector<int>& bills) {
int five = 0, ten = 0, twenty = 0;
for (int bill : bills) {
// 情况一
if (bill == 5) five++;
// 情况二
if (bill == 10) {
if (five <= 0) return false;
ten++;
five--;
}
// 情况三
if (bill == 20) {
// 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着
if (five > 0 && ten > 0) {
five--;
ten--;
twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零
} else if (five >= 3) {
five -= 3;
twenty++; // 同理,这行代码也可以删了
} else return false;
}
}
return true;
}
根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组people表示队列中一些人的属性(不一定按顺序)。每个people[i] = [hi, ki]表示第 i 个人的身高为hi ,前面正好有ki个身高大于或等于hi的人。
请你重新构造并返回输入数组 people 所表示的队列。
先按照身高进行排序,然后依次按照ki为下标插入即可,因为小数字在前面的插入是不影响后面大数字的下标条件的。
这里选择链表插入,因为vector的插入是O(n^2)的
// 身高从大到小排(身高相同k小的站前面)
static bool cmp(const vector<int>& a, const vector<int>& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
sort (people.begin(), people.end(), cmp);
list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多
for (int i = 0; i < people.size(); i++) {
int position = people[i][1]; // 插入到下标为position的位置
std::list<vector<int>>::iterator it = que.begin();
while (position--) { // 寻找在插入位置
it++;
}
que.insert(it, people[i]);
}
return vector<vector<int>>(que.begin(), que.end());
}
引爆气球
Leetcode 452. 一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。给你一个数组 points ,其中 points [i] = [xstart,xend],返回引爆所有气球所必须射出的最小弓箭数。
为了让气球尽可能的重叠,需要对数组进行排序。从前向后遍历,如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
int findMinArrowShots(vector<vector<int>>& points) {
if (points.size() == 0) return 0;
sort(points.begin(), points.end());
int result = 1; // points 不为空至少需要一支箭
for (int i = 1; i < points.size(); i++) {
if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>=
result++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
}
}
return result;
}
无重叠区间
Leetcode 435. 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
气球问题的本质是最多有多少个不重叠区间,这个问题中最小移除数量就是总区间减去最多不重叠区间。
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
sort(intervals.begin(), intervals.end());
int res = 1;
int end = intervals[0][1];
for(int i = 1; i < intervals.size(); ++i){
if(intervals[i][0] < end){
end = min(end, intervals[i][1]);
}else{
res++;
end = intervals[i][1];
}
}
return intervals.size()-res;
}
划分字母区间
Leetcode 763. 字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
提前记录好每个字母的最后下标,然后在遍历时实时更新当前字符的最右侧边界即可。
vector<int> partitionLabels(string S) {
int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
hash[S[i] - 'a'] = i;
}
vector<int> result;
int left = 0;
int right = 0;
for (int i = 0; i < S.size(); i++) {
right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
if (i == right) {
result.push_back(right - left + 1);
left = i + 1;
}
}
return result;
}
合并区间
Leetcode 56. 给出一个区间的集合,请合并所有重叠的区间。
vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> result;
if (intervals.size() == 0) return result; // 区间集合为空直接返回
// 排序的参数使用了lambda表达式
sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});
// 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
result.push_back(intervals[0]);
for (int i = 1; i < intervals.size(); i++) {
if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
// 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
result.back()[1] = max(result.back()[1], intervals[i][1]);
} else {
result.push_back(intervals[i]); // 区间不重叠
}
}
return result;
}
单调递增的数字
Leetcode 738. 给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
拿一个两位的数字来举例。例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。因此必须要从后向前遍历。
int monotoneIncreasingDigits(int N) {
string strNum = to_string(N);
// flag用来标记赋值9从哪里开始
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i] ) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
监控二叉树
Leetcode 968. 给定一个二叉树,我们在树的节点上安装摄像头。节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。计算监控树的所有节点所需的最小摄像头数量。
大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。遍历的话要采用后序遍历,因为需要处理好子节点,得到子节点的状态再考虑父节点。 每个节点可能有3种状态:无覆盖,有摄像头,有覆盖,可以用0,1,2来表示,空节点应记为有覆盖,否则叶子节点就要放摄像头了:
int result;
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
// 情况1
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
// 情况2
if (left == 0 || right == 0) {
result++;
return 1;
}
if (left == 1 || right == 1) return 2;
// 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
// 这个 return -1 逻辑不会走到这里。
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
// 情况4
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}