Leetcode记录:Bellman-ford算法
Bellman-ford算法
某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。
请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。
Bellman-ford算法专门处理带负权值的单源最短路问题。Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。
松弛
假设minDist[B]表示到达B节点最小权值,A可以花费value到达B,minDist[B] 有哪些状态可以推出来?
状态一: minDist[A] + value 可以推出 minDist[B] 状态二: minDist[B]本身就有权值 (可能是其他边链接的节点B 例如节点C,以至于 minDist[B]记录了其他边到minDist[B]的权值)。
那么minDist[B]应做出取舍,应该取二者最小值,这就是松弛操作。其实 Bellman_ford算法 也是采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。
对所有边松弛一次,相当于计算起点 到达 与起点一条边相连的 节点的最短距离,因此要对所有边松弛n-1次,才能得到起点到达所有节点的最短距离。
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<vector<int>> grid;
// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次
for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛
int from = side[0]; // 边的出发点
int to = side[1]; // 边的到达点
int price = side[2]; // 边的权值
// 松弛操作
// minDist[from] != INT_MAX 防止从未计算过的节点出发
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) {
minDist[to] = minDist[from] + price;
}
}
}
if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径
}
时间复杂度: O(N * E) , N为节点数量,E为图中边的数量 空间复杂度: O(N) ,即 minDist 数组所开辟的空间
Bellman-ford队列优化算法
Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。只需要对上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。
struct Edge { //邻接表
int to; // 链接的节点
int val; // 边的权重
Edge(int t, int w): to(t), val(w) {} // 构造函数
};
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<list<Edge>> grid(n + 1);
vector<bool> isInQueue(n + 1); // 加入优化,已经在队里里的元素不用重复添加
// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
queue<int> que;
que.push(start);
while (!que.empty()) {
int node = que.front(); que.pop();
isInQueue[node] = false; // 从队列里取出的时候,要取消标记,我们只保证已经在队列里的元素不用重复加入
for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int value = edge.val;
if (minDist[to] > minDist[from] + value) { // 开始松弛
minDist[to] = minDist[from] + value;
if (isInQueue[to] == false) { // 已经在队列里的元素不用重复添加
que.push(to);
isInQueue[to] = true;
}
}
}
}
if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径
}
队列优化版Bellman_ford 的时间复杂度 并不稳定,效率高低依赖于图的结构。一般来说,SPFA 的时间复杂度为 O(K * N) K 为不定值,因为 节点需要计入几次队列取决于图的稠密度。如果图是一条线形图且单向的话,每个节点的入度为1,那么只需要加入一次队列,这样时间复杂度就是 O(N)。
所以 SPFA 在最坏的情况下是 O(N * E),但 一般情况下 时间复杂度为 O(K * N)。
在有环且只有正权回路的情况下,即使元素重复加入队列,最后,也会因为 所有边都松弛后,节点数值(minDist数组)不在发生变化了 而终止。(而且有重复元素加入队列是正常的,多条路径到达同一个节点,节点必要要选择一个最短的路径,而这个节点就会重复加入队列进行判断,选一个最短的)
但是如果有负权回路的话,就会出现死循环!
Bellman-ford判断负权回路
可以在做完n-1次松弛之后再做一次,查看minDist是否会继续变化,如果发生变化则代表存在负权回路:
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<vector<int>> grid;
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
bool flag = false;
for (int i = 1; i <= n; i++) { // 这里我们松弛n次,最后一次判断负权回路
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
if (i < n) {
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
} else { // 多加一次松弛判断负权回路
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) flag = true;
}
}
}
if (flag) cout << "circle" << endl;
else if (minDist[end] == INT_MAX) {
cout << "unconnected" << endl;
} else {
cout << minDist[end] << endl;
}
}
也可以用SFPA来做,多加一个count数组判断每个节点被加入了多少次队列,如果达到n次则说明存在负权回路:
struct Edge { //邻接表
int to; // 链接的节点
int val; // 边的权重
Edge(int t, int w): to(t), val(w) {} // 构造函数
};
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<list<Edge>> grid(n + 1); // 邻接表
// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
queue<int> que;
que.push(start); // 队列里放入起点
vector<int> count(n+1, 0); // 记录节点加入队列几次
count[start]++;
bool flag = false;
while (!que.empty()) {
int node = que.front(); que.pop();
for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int value = edge.val;
if (minDist[to] > minDist[from] + value) { // 开始松弛
minDist[to] = minDist[from] + value;
que.push(to);
count[to]++;
if (count[to] == n) {// 如果加入队列次数超过 n-1次 就说明该图与负权回路
flag = true;
while (!que.empty()) que.pop();
break;
}
}
}
}
if (flag) cout << "circle" << endl;
else if (minDist[end] == INT_MAX) {
cout << "unconnected" << endl;
} else {
cout << minDist[end] << endl;
}
}
Bellman-ford之单源有限最短路径
例题:请计算在最多经过 k 个城市的条件下,从城市 src 到城市 dst 的最低运输成本。
前面讲Bellman-ford的时候提到过,对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。 最多经过k个城市就是k + 1条边相连的节点。因此我们对所有边松弛k+1次即可。
但是这道题可能会出现负权回路,如果我们只是简单地把松弛n-1次改成k+1次会出现错误:

第二次松弛开始,每次松弛都会导致所有节点距离-1,这里要做的就是每次更新都要根据上一次的minDist来更新:
int main() {
int src, dst,k ,p1, p2, val ,m , n;
cin >> n >> m;
vector<vector<int>> grid;
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid.push_back({p1, p2, val});
}
cin >> src >> dst >> k;
vector<int> minDist(n + 1 , INT_MAX);
minDist[src] = 0;
vector<int> minDist_copy(n + 1); // 用来记录上一次遍历的结果
for (int i = 1; i <= k + 1; i++) {
minDist_copy = minDist; // 获取上一次计算的结果
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
// 注意使用 minDist_copy 来计算 minDist
if (minDist_copy[from] != INT_MAX && minDist[to] > minDist_copy[from] + price) {
minDist[to] = minDist_copy[from] + price;
}
}
}
if (minDist[dst] == INT_MAX) cout << "unreachable" << endl; // 不能到达终点
else cout << minDist[dst] << endl; // 到达终点最短路径
}