Leetcode记录:单源最短路径问题:Dijkstra算法

Dijkstra算法

以一个例题为背景:小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

输入第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。 接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。

dijkstra算法:在有权图(权值非负数)中求从起点到其他节点的最短路径算法。需要注意两点:

  1. dijkstra 算法可以同时求 起点到所有节点的最短路径
  2. 权值不能为负数

dijkstra算法和我们之前讲解的prim算法思路非常接近,分为三步:

  1. 选源点到哪个节点近且该节点未被访问过
  2. 该最近节点被标记访问过
  3. 更新非访问节点到源点的距离(即更新minDist数组)

在dijkstra算法中,同样有一个数组很重要,起名为:minDist。minDist数组用来记录每一个节点距离源点的最小距离。

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid[p1][p2] = val;
    }

    int start = 1;
    int end = n;

    std::vector<int> minDist(n + 1, INT_MAX);
    std::vector<bool> visited(n + 1, false);
    minDist[start] = 0; 

    //加上初始化
    vector<int> parent(n + 1, -1);

    for (int i = 1; i <= n; i++) {

        int minVal = INT_MAX;
        int cur = 1;

        for (int v = 1; v <= n; ++v) {
            if (!visited[v] && minDist[v] < minVal) {
                minVal = minDist[v];
                cur = v;
            }
        }

        visited[cur] = true;

        for (int v = 1; v <= n; v++) {
            if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
                minDist[v] = minDist[cur] + grid[cur][v];
                parent[v] = cur; // 记录边
            }
        }

    }

    // 输出最短情况
    for (int i = 1; i <= n; i++) {
        cout << parent[i] << "->" << i << endl;
    }
}

时间复杂度:O(n^2) 空间复杂度:O(n^2)

Dijkstra算法不能出现负权值,但prim算法是可以的,因为prim算法只需要将节点以最小权值和链接在一起,不涉及到单一路径。

Dijkstra堆优化

最小生成树的两个算法:prim算法(从点的角度来求最小生成树)、Kruskal算法(从边的角度来求最小生成树)

在n 很大的时候,也有另一个思考维度,即:从边的数量出发。 当 n 很大,边 的数量 也很多的时候(稠密图),那么 上述解法没问题。 但 n 很大,边 的数量 很小的时候(稀疏图),是不是可以换成从边的角度来求最短路呢?

我们可以利用小顶堆来处理:

// 小顶堆
class mycomparison {
public:
    bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
        return lhs.second > rhs.second;
    }
};
// 定义一个结构体来表示带权重的边
struct Edge {
    int to;  // 邻接顶点
    int val; // 边的权重

    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<list<Edge>> grid(n + 1);

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val; 
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));

    }

    int start = 1;  // 起点
    int end = n;    // 终点

    // 存储从源点到每个节点的最短距离
    std::vector<int> minDist(n + 1, INT_MAX);

    // 记录顶点是否被访问过
    std::vector<bool> visited(n + 1, false); 
    
    // 优先队列中存放 pair<节点,源点到该节点的权值>
    priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;


    // 初始化队列,源点到源点的距离为0,所以初始为0
    pq.push(pair<int, int>(start, 0)); 
    
    minDist[start] = 0;  // 起始点到自身的距离为0

    while (!pq.empty()) {
        // 1. 第一步,选源点到哪个节点近且该节点未被访问过 (通过优先级队列来实现)
        // <节点, 源点到该节点的距离>
        pair<int, int> cur = pq.top(); pq.pop();

        if (visited[cur.first]) continue;

        // 2. 第二步,该最近节点被标记访问过
        visited[cur.first] = true;

        // 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
            // cur指向的节点edge.to,这条边的权值为 edge.val
            if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
                minDist[edge.to] = minDist[cur.first] + edge.val;
                pq.push(pair<int, int>(edge.to, minDist[edge.to]));
            }
        }

    }

    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}

时间复杂度:O(ElogE) E 为边的数量 空间复杂度:O(N + E) N 为节点的数量